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Pulsatile flow in curved pipes 

By F. T. SMITH 
Mathematics Department, Imperial College, London 

(Received 17 October 1974) 

The characteristics of some flows that occur when fluid is driven through a curved 
tube are disclosed for an imposed pressure gradient of pulsatile nature, varying 
sinusoidally with time about a non-zero mean. The fully developed motion 
depends on three parameters, a traditional Dean number D, a frequency- 
related parameter p and a secondary Reynolds number R,, it being assumed that 
the pipe’s radius of curvature is much greater than its cross-sectional dimensions. 
The theoretical description of the flow field is extended from the steady and 
purely oscillatory limits hitherto studied to all the key situations arising when 
R, is of order unity and one of the other parameters or D takes a large or small 
value. During this analysis, which in certain cases involves the interactions 
between steady boundary layers and Stokes layers, a number of pulsatile motions 
are revealed and the manner in which a t  high frequencies the secondary motion 
can change its direction, from inward ‘ centrifuging ’ to outward, is also explained. 
Two further illustrations of pulsating motions, stemming from the steady limit, 
produce an alternative mode of transition from steady boundary-layer flow to the 
boundary-layer flows occurring when R, - 1. The study, which mainly deals 
with the flow in an arbitrary cross-section, lays down a formal basis for deriving 
the fundamental attributes of many physical situations, some of which are 
expressible in terms of crucial modifications to, or combinations of, flow problems 
whose properties are already appreciated. 

1. Introduction 
However remote from the particular real pipe-flow situations of concern to 

physiologists and engineers, the determination of the characteristics of fluid flow 
down a perfectly smooth pipe of uniform cross-section and coiled in a circle is 
nevertheless a good starting point for a theoretical description. The considerable 
nonlinear effects directly attributable to the curvature are then taken into 
account, and from the physiological standpoint, leaving aside the influences of 
tube branchings and non-uniformity of cross-section, among others, the inter- 
actions produced when a time-dependent pressure gradient acts along the pipe 
can be expected to provide greater insight into the fluid dynamics operative in 
(for example) aortic blood flow. 

Two fundamental theoretical approaches have so far been made towards 
evaluation of the fully developed flow in a tube whose radius of curvature R is 
much greater than its typical cross-sectional dimension a ( =  6R). The first, 
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FIGURE 1. Cross-section of the tube and the co-ordinate system. 

dealing with the actions of a steady pressure gradient, originated with Dean's 
(1927, 1928) papers, and a review of the main work on steady pipe flows is given 
in a related paper (Smith 1975). The second approach, which is discussed in 5 3 
below, is due to  Lyne (1971), who assessed the motion induced in a circular tube 
by a pressure gradient that varies sinusoidally with time t about a zero mean. 

I n  the current study we consider a number of the unsteady laniinar flow 
features arising when a pulsatile pressure variation 

ap*/a(Be) = - [p*'wFcoswt+Q] (1.1) 

is imposed along a pipe of arbitrary, but symmetric, cross-section. Here p * ,  p* 
and w are respectively the pressure, density and a characteristic ve1ocit.v of the 
contained fluid, which is incompressible and of kinematic viscosity I ' ,  while o 
denotes the frequency and G the constant steady component of the pulsating 
pressure gradient. 0 measures the angular displacement around the axis A Z ,  
and local co-ordinates (x*, z * )  in the pipe cross-section will subsequently be used, 
as shown in figure 1. Clearly the properties of the fluid motion will depend largely 
on the fluid itself a i d  on the size of G: in relation to the frequency and amplitude 
of the oscillatory component in (1.1); for instance, a delicate interplay between 
the inward centrifuging predicted (and realized experimentally) by Lyne (1 971) 
and the outward streaming revealed by Smith (1975) can be anticipated for 
certain values of the governing parameters (1.7) of the motion. Our plan in this 
paper is to investigate some of the series of flow fields that occur in the regimes 
intermediate between the general oscillatory and steady cases, and the discussions 
will usually be relevant to any symmetric cross-section. One reason for keeping 
the study broadly based in this way, apart from the advantage of retaining 
generality, is the manner in which thc choice of a triangular cross-section may 
lead to a similarity solution for D 9 1 in the steady situation ( 8  2 . 2 ) ,  while the 
choice of a circular one can facilitate the analysis of oscillatory motions ( $ 3 )  and 
of steady motions for small values of D ( 5  2.1). The tube profile is supposed to be 
symmetric, however, so that only the flow in the upper half of the tube need be 
considered. 
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The equations of motion. For sniall values of S the fluid motion is assumed tJo be 
directed primarily down the pipe, with secondary streaming of relative order 64 
taking place in the plane of the cross-section. Hence the velocity components in 
the directions (x*, z*, 0) may be written as 

(u*, w*, w") = (via) (u, w,S-tw), (1.2) 

where an asterisk indicates a dimensional variable, and generally u, v and w are 
of order unity. End effects in the pipe will be neglected, so the solution depends on 
the non-dimensional co-ordinates (x, z )  = (x*/a, z*/u) and time 7 = o t  but is 
independent of 8. Mass conservation is satisfied by introduction of a stream 
function x such that 

working to first order in S here and henceforth. Then the Navier-Stokes equations 
yield (see, for example, McConalogue 8: Srivast,ava 1968; Lyne 1971) 

= ax/az, v = -axlax, (1.3) 

(1 3)  

as the governing equations with which we shall be concerned, V2 standing for the 
Laplacian a2/ax2 + a2/ay2 and, as usual, 

aaay aaay a(a,y) = _ - _ _ _  
a(x,z) - ax a2 a2 ax 

for any functions a(x,  z )  and y(z,  z ) .  The boundary conditions to be satisfied with 
(1.4) and (1.5) are those ofno slip: 

x = ax/an = w = 0 a t  the tube wall, (1.6) 

with n denoting t,he direction of the inward normal to the wall (and, implicitly, 
symmetry about the x axis). 

The parameters appearing in (1.4) and ( 1  5)  are defined as 

D = Ga3Sj/p*v3, = ( ~ V ~ U C L ~ ) ~ ,  Rs = ~ W ~ / W V ,  (1.7) 

and are supposed to be O(1) for the moment. The parameters (whose physical 
interpretations are given in Lyne 1971; McConalogue & Srivastava 1968) and 
the non-dimensionalization here have been selected as a compromise between 
those of Lyne, McConalogue & Srivastava and Smith, and direct comparison 
with their work is possible (see 5s 2 and 3). The other notable parameters adopted 
previously, e2 = &RJ2 and the alternative Dean number I< = aVv-184, are 
related to those in (1 .7)  by 

K = p*vvD/Ga2, R, = gK2P2, E = RJK, (1.8) 

while the ratio of the magnitude of the steady pressure gradient to that of the 
unsteady part is G/p%Wor 24Db3/4R:. Further, from the definition of w, the 
down-pipe velocity is always 0(@/3-l) in our parameter range. 

Since for most values of p, R, and D, (1.4) and (1.5) must be solved as they 
stand, which represents a formidable task, we examine below the nature of the 
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motion when one of the parameters D and p takes on a large or small value. The 
two classic limits of steady flow and purely oscillatory flow appear to be the only 
ones rigorously studied to date, except for the current investigation by Blenner- 
hassett (1976) referred to in $4. As well as gaining some knowledge of certain 
aspects of pulsatile pipe flows, from consideration of limits that we regard as both 
important and physically sensible, we therefore aim to provide a coherent scheme 
accounting for the transition from completely steady to completely oscillatory 
motion, step by step. First the steady and oscillatory limits (cases I and 11), and 
small perturbations from them, are discussed in $$ 2 and 3 and subsequently in 
$3 4-6 we elucidate the behaviour of the solution in the intermediate limits (cases 
111-VIII) when R, is O(1). A complete asymptotic description is then possible. 
The outstanding features of these cases are the fully pulsatile motions in cases IV 
and VIII, the partitioning of the viscous wall layers into steady and unsteady 
(Stokes shear-wave) zones in cases I11 and IV, and the reversal in the direction of 
the main ' centrifuging ' which happens in case 111. The last two cases, IX and X in 
$3 7 and 8, produce a match between cases I and IV, and are also both pulsatile, 
case I X  being an example of a nonlinear down-pipe pulsation with unsteady 
secondary streaming, while the boundary layer in case X also subdivides a t  the 
interface with case IV. A brief discussion of the results is presented in $ 9. Overall, 
the analysis constructs a formal framework from which the solution to many a 
physical problem may be extracted in principle, in the sense that most of the new 
situations explored are reducible ultimately to subtle modifications or combina- 
tions of the steady and/or unsteady limits, and these two limits are themselves 
fairly well understood now. Where this reduction is not possible (cases IX  and X) 
asymptotic descriptions do serve as a guide to the general nature of the pulsatile 
flow. 

Detailed discussion of the degeneracy that may occur near flat outside bends 
in certain circumstances (see Smith 1975) will be omitted here. Regarding 
nomenclature, since many different cases are to be assessed, our policy is to avoid 
the introduction of over-elaborate notation by keeping each section self-contained. 
All the definitions made hitherto do apply in each case, however. Lastly, the 
polar co-ordinates ( r ,  $) associated with the Cartesians (2, z )  will be used when a 
circular tube (Y = 1)  is under discussion. 

2. The steady limit (case I) 
The first study of the motion of a fluid along a curved pipe when 6 is small was 

made by Dean (1927), who discussed some of the effects due to  a uniform steady 
down-pipe pressure gradient. Dean's problem may be obtained from (1.4) and 
(1.5) bytakingthelimitp-tcowith R, N P2andwithD,wandXkept fixedat order 
one. Supposing then t,hat 

1 9  1, R,p-' N 1, D N 1, (2.1) 

which defines the present case I, we therefore expand the flow field asymptotically 

(2.2) 
as w = wo(z, 2) + p - y 2 ~ , / p p  wl(z, z , 7 )  + o(p-41, 

x = ~ ~ ( 2 ,  2) +p-wRs/p2)+X1(x ,  z , 7 )  + o(p-4) .  
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When substituted into the equations of motion (1.4) and (1.5), (2.2) produce a t  
first order Dean’sequatima for the steady components w, and xo: 

(2.3) 

(2.4) 

- ah,,  V2x0)&, 2) - 2woawo/az = V4x0, 

- qx,, w,)&, 4 = + v2wo, 
subject to xo = axo/% = w, = 0 at the wall. 

The unsteady disturbances w1 and x1 due to the small oscillatory pressure 
variation are given by 

- 8(x0, wl)/a(x, 2) - qx,, w,)/a(z, 2) = 2 Cos7 + VZW,. 1 
Here w1 and x1 again satisfy the obvious no-slip wall conditions. Dean’s 
equations (2.3) and (2.4) controlling w, and xo have recently received a fair 
amount of attention; for example, for order-unity values of D accurate numerical 
solutions have been derived by McConalogue & Srivastava (1968) for the circle 
and by Cheng & Akiyama (1970) for the rectangle. Below we shall briefly consider 
their properties for values of D << 1 and, more especially, those discovered in the 
more interesting case D B 1,  and simultaneously discuss the unsteady perturba- 
tions when D assumes small or large values. 

2.1. D < 1 

For small values of D, Dean (1927) showed that the motion reverts to a lineariza- 
tion about the Poiseuille flow solution for a straight pipe. Thus 

(2.6) W, = Dw,, + D2wOl + O(D3), xo = D2xoo + D3xOl + O(D4), 

which to lowest order in D leaves (2.3) in the form 

v~w,, = - 1,  v4xoO = - 2w,awoolaz 

with conditions of zero velocity a t  the tube wall. For instance, for a circular tube 
r = 1 the solution is (see Dean 1927) 

woo = a( 1 - r2) ,  xoo = &r( 1 - r 2 ) 2  ( 1  - ar2) sin 4. (2.7) 

Similarly the unsteady disturbances w1 and x1 can be expressed as 

w1 = wl0 + Dwll + O(D2),  x1 = Dxlo + D2xll + O(D3), (2.8) 

and froin (2.5) we find that 

v2Wlo = - 2 COS 7,  v4xlO = - 2a(WoO Wlo)/& 

with the no-slip conditions, the relative error again being O(D2).  Hence 

wl0 = $( 1 - r2 )  cos 7 ,  xlo = T&r( 1 - r2)Z ( 1  - ir2) sin 4 cos T (2.9) 

for a circle. Expressions for woo, xoo, wl0 and xlo are also calculable for rectangular 
and triangular cross-sections, although they involve double series expansions. 

2-2 
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2.2. D B 1 

When D is large the steady flow is expected (initially, a t  least) t o  develop a 
laminar boundary-layer character, and Smith’s ( 1975) invest’igation, among 
others, shows that this has the form of an inviscid core motion, with fluid drifting 
slowly outwards, supplemented by a viscous jet flow along the pipewallsinwhich 
the secondary flow is projected mainly towards the inside of the bend. In  the core, 

w, = D ~ w p + D ~ w ~ ” + o ( l ) ,  xo = D”p+x~”+o(D-+) (2.10) 

for D 1, where w6“’ = w, (0)  (x), xi,) = z/w~”’(x) (2.11) 

in order to  satisfy the Dean equations (2.3) to a first approximation. Here and 
henceforth a prime will denote differentiation with respect to the appropriate 
independent variable. Near the wall, z = g(x) say, the boundary layer (or jet) has 
thickness N D-f and 

wo = DW0(S,  N )  + O(Dj) ,  xo = D+X,(S, N )  + O( 1) )  (2.12) 

where N = Ddn N 1, and W, and X, are found to obey 

(2.13) 

with the boundary conditions 

(2.14) 

Here s denotes distance along the tube wall, starting from the outside of the bend, 
and it is necessary that g‘(x) be finite and that a stagnation point be imposed a t  
the inside of the bend (see Smith 1975). The reason for the orders of magnitude in 
(2.10) and (2.12) is that in the viscous layer the centrifugal effect has to force the 
secondary streaming, whereas the primary motion is dominated by the interplay 
between inertia and viscous forces alone, and it is in the core that the large steady 
pressure gradient promotes the secondary flow. 

A number of other researchers, Blennerhassett (1976)) Prof. N. Riley, Prof. 
J. T. Stuart and Ito (1969)) have been aware of the large-D problem (2.13) and 
(2.14) for a circle, and we now know (Smith 1975) that an attached-flow solution 
exists in a certain simple situation, but not in another equally simple case. 
Specifically, Smith proves that, almost certainly, no attached solution exists for 
the rectangle, when g(x) = d > 0,  say, but a well-defined similarity solution can 
be found for the triangle, when g(x) = x t a n a  (0  < x < 1) .  For the latter 
configuration W, = B d H ( y ) ,  X ,  = (B/~osa)b&FF(y), (2.15n) 

where y = (Bcosa)BNx~, and H and F are governed by a pair of nonlinear 
ordinary differential equations, with 

X ,  = aX,/aN = W, = 0 at N = 0, 

X 0 ( S ,  00) = g(x)/wp’(x), WO(S, co) = wp(x). 

F(0)  = F’(O) = H(O) = F’(.o) = H(co)- 1 = 0. 
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The numerical solution has the main properties 

F"(0) = 1.820, H ' ( 0 )  = 1.119, F(co) = 0.562 (2 .15b)  

and for consistency B = 1.669 sin) a cos-$a. The question raised in Smith (1975) 
of the range of validity of ( 2 . 1 5 ~ )  for the triangle is not yet settled (if it applies 
throughout 0 < x < 1 ,  for example, then an inertia-driven boundary layer is set 
up near the outside of the bend x = 1 ) )  but for any cross-section that comes t o  a 
point at the inside of the bend x = 0, the solution, provided that i t  exists elsewhere, 
has the form (2.15) locally near x = 0. On the other hand, since the rectangular 
case has no such large-D solution, neither has any cross-section with a flat inner 
side. 

The assumption of a solution for large values of D for any particular cross- 
section must accordingly be made with some caution. It is our intention in the 
forthcoming sections to assume implicitly that a solution does exist for the third 
fundainental cross-section, namely the circular one, for which (2.13) becomes 

qxo, w,)/a(p, II.) = azw,/ap2. 

Here $ = s measures the angle from the outside of the bend I$ = 0 and 

p =  (1-r)D) 
replaces N .  Also. 

(2.16) 

(2.17) 

To lend support to our assumption we note the following gratifying features of 
(2.16), subject to (2.14). First, for consistency close to  the inside of the bend 
$ = n, where t'he boundary layer finishes, it is found tjhat the solution must 
develop in non-integral powers of 0 = n - @ because the wall becomes ' vertical', 
and we find that 

4') = b8![1+i82+O(04)], xin) = ( 3 ~ / 4 A ) 8 ~ [ 1 - $ 8 2 ( 1 + 1 5 ~ ) + 0 ( $ ~ ) ]  ( 2 . 1 8 ~ )  

in the core, with the constants Â  and 2 unknown. I n  the boundary layer 

w, = ,X&[fi(q) + i?#2Bl(q) + 0(B4)1, x, = &B+[P(q) + B z P , ( q )  + 0(84)1 
(2.18b) 

(9 = Â$&). Substituting into (2.16) gives the nonlinear ordinary differential 

equations p" = iFF"-pF'2+&2- 1 H" = g#HI-$pIfi  (2.18 c) 

for and I?, for which the boundary conditions are as in (2.15u)ff. The 
solution here, obtained numerically using Burggraf's program (see Smith 1975) 
and displayed in figure 2, has the principal properties 

A ,.A A A A 

P"(0) = 1.595, B'(0) = 1.266, #(a) = 0.503. 

Hence b = 1.303. The subsequent terms 8,) P,,  . . ., in (2.18 b)  also satisfy ordinary 
differential equations, but of linear type, and can be calculated. 
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FIQURE 2. Solution curves o f f ,  k’ and & vs. 4 for the inside of the bend in 
a circular tube [equations (2.18)]. 

The second special property associated with the circle concerns the start of the 
boundary layer at the outside wall ~ = 0, where the flow is regular. For + < 1 i t  
is evident that, if pr = p[wg)( I)]*, 

because wlp‘( 1) being non-zero forces a non-zero initial distribution of primary 
flow near the wall, but the secondary streaming is initially zero by symmetry. In 
(2.16) this yields the following coupled equations for h andf: 

fl” + j p  -$’2 + 1 - k 2  = 0, p +fit = 0, 

with the usual boundary conditions. The problem for h andf is identical with one 
solved by Stewartson (1957) and so has the properties 

f”(0) = 0.953, i’(0) = 0.463, ~ ( c o )  = 1.33. 

Thence, matching the core and viscous layer, 

d@’( l ) / dx  = 0.75[~60’( I)]-$. (2.19 b )  

The value of who)( 1) must actually be fixed by the assumed solution to (2.14) and 
(3.16) for all @, but some justification that the overall solution does in truth exist 
comes from comparing the value of w’(z) according to the above resill6 a t  x = 1 
with a typical core value predicted by McConalogne 8: Srivastava’s (1968) com- 
putationsalong $ = 0. Taking 21w( 1)  = 98-5 at  2 4 0  = 605.72 (the factors 24 allow 
for the differences in definition between the Iast-named and the present papers), 
(2 .19b)  gives w’f l)  M 38.4 whereas the full numerical solution has ~ ‘ ( 0 . 5 )  .i. 33.9, 
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which is in fair agreement. An assessment of the accuracy of (2.18) also suggests 
quite a good approximation, and hence our belief in the existence of a high Dean 
number solution for the circle seems not unreasonable. Indeed, the very existence 
of the initial and terminal forms (2.19) and (2.18) is strongly supportive (cf. 
Belcher, Burggraf & Stewartson 1972), and the nearly completed calculations of 
(2.16) and (2.17) by Prof. N. Riley and Prof. S. C. R. Dennis appear to bear out 
our implicit assumption. However, the work undertaken below does not depend 
crucially on that assumption since all the ensuing results are readily modified to  the 
triangular situation, or to any other cross-section for which a solution also exists. 

1 
they behave in the following manner, which is indicated by reasoning akin to  that 
for the major flow (2.10)-(2.14). I n  the core, 

Moving on now to the unsteady perturbations, we propose that when D 

w - - D-J dw1'+O(D-f), (0 x1 = D-%$f'+O(O-l), (2.20) 

so that (2.21) 

upon substitution into (2.5). Again the B-) viscous layer is required near the wall 
z = g(x), where 

(2.22) w, = D-)w,(s, N ,  7) + O(D-%), x1 = D-%X,(s, N ,  7) + O(0-1). 

.Hence W, and X ,  satisfy 

(2.23) 

subject to  conditions of no slip at the wall and of matching with the core at the 
edge of the boundary layer, i.e. 

I X ,  = aX,/aN = W, = 0 at N = 0, 

Despite the absence of any time derivative in (2.23), the components W, and X ,  
are nevertheless unsteady owing to the pulsatile nature of the core flow (2.21), as 
can be seen in (2.25) and (2.26) below. 

To verify that solutions for W, and X ,  are possible let us consider first the 
features of a 'pinched' inside wall g(x)  = x t a n a  for x < 1, for which the steady 
motion is given in (2.15). The similarity form there motivates a search for a 
corresponding similarity solution to  (2.23) and (2.24) and for a simple core 
motion. It is found that 

wi0) = Cx5 COST, implying xi0) = -xi 2--  COST, (2.25) 
5 B  6z ( ;) 

while in the boundary layer 

W, = C&h(r]) cos T, X ,  = C ( B  cos a)-$ &f(r]) cos 7, (2.26) 
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FIGURE 3. Graphs off, f’ and h 2’s. g for R pinched inside wall 
[equations (2.27)]. 

where r j  = (B  cos a)* xi and the constant factors C and B cos a are introduced for 
convenience. Then (2.23) and (2.24) are obeyed provided that h(rj) andf(rj) satisfy 

(2.27) 1 f” = ;(Ff”+fF”)-+F’f’+2(Hh- I), 
h” = :(Fh’+fH’) -;(F’h + f ’ H ) ,  

withf(0) = f r ( 0 )  = h(0)  =f’(m) = h(00)- 1 = 0. Also, 

5B C 

then serves to determine the unknown constant C. A numerical solution of (2.27) 
gives 

h’(O) = 1.67, f ” ( 0 )  = 2.51, f ( m )  = 0.63, 

and the implied value for C is then 1.57 sin% a cos-3 a. Graphs off, f‘ and h are 
drawn in figure 3. 

Likewise, similarity expressions for Wl and X, may be set up for the circular 
tube near II. = 71 and ~ = 0, based on the known local steady solutions (2.18) and 
(2.19) respectively, and i t  transpires that near the inside of the bend 

wit,h P ,  and 8, governed by linear equations much like (2.27). The solution, 
obtained numerically, is given in figure 4 and has the properties 

B;(O) = 1.99, P;(O) = 2-19, Pl(m) = 0.43, 
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a circula; tube [equations (2.28)]. 

FIGURE 5. Graphs offl, fi and h, vs. p1 for the outside of the 
bend in a circular tube [equhons  (2.29)]. 

so'[that 8 = 0.65. Similarly, near the outside of the bend of the circular cross- 
section, one finds that 

% = K1hl(P1) cos7 + o($), = K1$ cos '$l(pl)/K'+ o($'), J 
where K = do)(l) and K~ and e are constants. Figure 5 shows the calculated 
solution forfl,fi and &, which gives 

and'? = (1-5 - O . ~ ~ K , / K ~ )  K-3. The significance of these similarity solutions will 
become more apparent when case IV is examined below. 

f&(O)  = 0.69, fI;(O) = 1.24, f1(m) = 0.66 
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It is noted that the oscillatory perturbations in the present quasi-steady state, 
e.g. (2.25), are in phase with the pressure gradient and hence out of phase with 
the majority of the pulsatile flows revealed in later sections (see $3 3-8). The same 
holds for the results in $2.1. Another point worth stressing is that in the high 
Dean number limit, from the definition of in 5 1, 

K = AD$, (2.30) 

where h is an order-one constant, equal to 1-17 sin) a cos-f a for the triangle if 
is defined a's the average core velocity of ( 2 . 1 5 ~ )  (see Smith 1975). The relation 
(2.30) leads us to consider in $57 and 8 a number of limits of the equations of 
motion (1.4) and (1.5) which turn out to possess interesting pulsatile charac- 
teristics. I n  fact the present large-D analysis matches with case I X  below when 
(2.30) is preserved. Next, however, we shall discuss the second classic limit of the 
full problem (1.4) and (1.5) to have been studied: that of a purely oscillatory 
pressure gradient. 

3. The oscillatory limit (case 11) 
When the Dean number D is set equal to zero in (1.5), with ,8 and R, kept fixed, 

the problem of evaluating the effects of an oscillating pressure gradient, discussed 
by Lyne (197 l),  results (although our non-dimensionalization is slightly different 
from his). Hence, if the solutions of his equations for R,, p - 1 are written as 
wo(x, z ,  7) and xo(x,  z ,  7), then for small non-zero values of D the expansions 

w = w0+Dw,+0(D2), x = Xo+DXl+0(D2) (3.1) 

are appropriate. These yield the equations 

for the perturbations x1 and w1 due to the presence of the small mean pressure- 
gradient component. The small-D equations (3.1) and (3.2) with the boundary 
conditions of no slip at the tube wall will be referred to as case I1 and in the 
remainder of this section various features of the flow will be considered for small 
and large values of ,8. 

3.1. ,8< 1 

Lyne (197 1)  confined his analysis of wo and xo to the high frequency range ,8 < 1. 
With D < /3 < 1 and R, - 1 the solutions for w1 and x1 are then also obtainable, 
as follows. 

Considering first the core, where wo = ,8-1(2R,)isin 7, to first order xo = xo(x ,  z )  
is steady and governed by the two-dimensional Navier-Stokes equation (see 
Lyne's work) 

(3.3) -%yo, vzxo)/W, 4 = V4x0 



Pulsatile flow in curved pipes 27 

under the slip conditions xo = 0 but axo/an = - fRsp(x) at the solid surface, 
owing to the behaviour (3.8) below. The function p(x) is defined for the general 
shape z = g(x) by 

for the circle it gives a factor sin @, while for the rectangle p = 1 on the top wall 
and p = 0 on the side walls. (Computed results for (3.3) with the above boundary 
conditions are presented by Kuwahara & Imai (1969) for the circle, with €2, 
ranging from zero to 2048.) w1 and x1 now develop according to the formulae 

p(x) = [l +g'(x)2]-*; (3.4) 

w1 = w',)(x, 2) +/3w"'(x, 2) + 0( /32) ,  x, = px\"'cx, z , 7 )  + O(B2). (3.5) 

Here wp), wil) and wi2) are steady terms and from substitution into (3.2), wio) and 
xio) are controlled by the equations 

for arbitrary values of R,. The lower-order terms bring time dependence and 
viscosity into the x and w equations respectively. We stipulate the boundary 
conditions 

but in general a2f)lan will be non-zero there because (3.6) is inviscid. Integrating 
(3.6) once with respect to 7 then leaves 

v2xp = - 2 ( 2 ~ , ) *  cos 7 awp/az ( 3 . 6 ~ )  

an arbitrary function of x, z being omitted for reasons similar to those given by 
Lyne (1971, 92) .  

Second, in the O ( p )  Stokes layer bordering the wall, wo remains of order p-' but 
xo is reduced to order p, the precise solutions for an arbitrary cross-section 
following from an extension of Lyne's work as 

(3.8) wp) = xio) = 0 at the pipe wall 

wo = p-l[sin 7 - e-7 sin (7 - 7) + O(/3)] (2RS)3, (3.9u) 

x o  = B{-a~l+ocl,>Rspu(x)+O(P2). (3.9b) 

Generally 7 = P-ln, and O( 1)  here stands for the terms in equation (3.26) of Lyne's 
paper that remain finite as 7 -+ co. Therefore it is to be expected that in the 
Stokes layer 

(3.10) 

where T(x) = (aw'f)/ax),,o is as yet unknown. Expansion (3.10) yields, in (3.2), 
the viscous balance 

a3xI/a7 a 1 2  = 4 a4x1/a74 (3.11) 

to first order in p, other terms following readily. The constraints on (3.11) are 
those of no slip at  7 = 0 and aX,/aq --f (ax\o)/an),=, E R(x)  cos 7 as 7 -+ 00, where 
R(x) ,  like T ( x ) ,  is to be ascertained from (3.6)-(3.8). Hence we deduce 

X ,  = R(x) (7 cos 7 + 2-4 cos (7 + in) + 2-3e-7 sin (7 - 7 + in)} (3.12) 

w1 = p7 ~ ( x )  + o(m, x1 = P ~ X ,  + 0 ~ 3 ~  

and the Stokes-layer solution is determined. 
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The remaining problem, which is to calculate T ( z )  and R(z) from (3.6)-(3.8), 
is in general a computational task, as is the determination of xo in (3.3). It may be 
clone analytically, however, if R, < 1, since then wi0) is O(1) and xio’ is O(Rk) 
whereasx, is O(R,J. T~ILIS V2w(f) = - 1, implying the Poiseuille flow for the circular 

w‘0’ = $(I  -).2), (3.13) cross-section, 

and the equation V?,y(1O) = (2R,)&rsin$ COST for x$“, to  highest order. Conse- 

xio) = 9(2R,)3(r2- l ) ~ s i n $  COST, 
quentlg , 

giving R(.c) = - $(2R,)t sin $ and T ( z )  = 4 when R, is small. 
Again, if R, 9 1 the essential character of the solution could be ant,icipated by 

recalling Lyne’s (1971) solution (5.3) for R;Ixo, within a circle, and treating the 
core as an inviscid interior with viscous layers astride the Stokes layer and the 
centre-line. This flow is in effect encountered in a study undertaken by Blenner- 
hassett (1976), which is mentioned briefly in Q 4. 

1 

3.2. /3+ 1 

If now R, N 1 but p 9 1 (low frequencies), so that the motion is in a sense slow, 
inspection of the basic equations indicates the expansions 

= ~-3~,,+ o(p--6), xo = p - 6 ~ ~  + o(p-9). (3.14) 

The entire flow field is viscous here, and is given mainly by the linear interactions 
between the oscillatory pressure gradient and the viscous term in the w equation, 
and between the centrifugal force and the viscous term in the x equation. For the 
circular tube, therefore, 

woo = ( + R s ) ~ ( 1 - r 2 ) c o s ~ ,  ?coo= ~ R , r ( 1 - r 2 ) 2 ( 1 - a r 2 ) s i n ~ c o s 2 7 .  (3.15) 

Higher-order approximations are also readily calculable, as are the solutions for 
flow within rectangular or triangular tubes. The disturbances utl and x1 of (3.1) 
can then be expressed in similar fashion as 

w1 = wl0 + O W 3 ) ,  x1 = P-3x10 + O W 5 )  (3.16) 

and we derive the solutions for the circle to be 

wl0 = + ( l - r 2 ) ,  xlo = &(2Rs)*r(r2- 1)(fr2- l)sin$ cos27. (3.17) 

Lastly in this section we emphasize that whilst the boundary-layer form of case 
I applied for large values of D (and of RJ, case I1 gives essentially a description 
of the flow pattern for small values of D,  whatever the values of /3 and R,. 
Moreover, in the steady limit I the centrifugal force drives the secondary 
streaming in both the core and the wall jet and the centrifuging is outwards in the 
core, whereas in the oscillatory limit the core centrifuging is partly inwards and 
there is practically no centrifugal effect except in the Stokes layer a t  high frequen- 
cies. Another strong contrast is that in case I (for D > 1) the secondary streamlines 
emanate from the boundary layer, which serves to determine the core motion, 
while in case I1 (for p < 1) there is no such outflow and the core motion consistsof 
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FIGURE 6. Sketches of the secondary streamlines in case I11 (p < 1) when (a) D < 1 
(cf. Lyne 1071) and ( 6 )  D S 1. In  ( b ) ,  (i) is the Stokes layer, (ii) the steady slip layer, 
(iii) the steady boundary layer a,nd (iv) is the steady interior of the core. Only the upper 
half of the arbitrary section is shown. 

two vortices rotating in opposite directions (see figure 6).  I n  consequence the 
transition between the two is not a straightforward matter (except via the full 
equations of motion (1.4) a,nd ( 1.5) and we shall now discuss some further limiting 
situations and show how the two fundamental limits, cases I and 11, may be 
joined through a succession of asymptotic descriptions. Case I1 in fact switches to  
the following case I11 for /3 and D both small, and to  case VIII below for /3 9 1 
and D < 1, when R, is of order unity. 

4. Case III: b <  1,  D,R, N 1 

This high frequency limit is significant because, among other things, it shows 
how the secondary streaming, while remaining steady, alters from the patterns 
given by Lyne (1971) (see $ 3 )  to  those of the Dean equations (2.3) by way of 
crucially modified Dean equations. When ,13 is small it transpires that in the core 
the time variation of w must be balanced by the dominant, oscillating, part of the 
pressure gradient, and yet the steady pressure gradient induces a disturbance in 
the down-pipe velocity whose centrifuging drives the secondary streaming. Thus 

where wl, xo and x1 are independent of 7 but 
= p-lWO+ w1 + O(p)7 = XOt/3X1 + O(P2)7 (4.1) 

(4.2) wo = (2R,)4 sin 7. 
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This leaves, from the governing equations (1.4) and (1.5), the equations 

(4.3) I - a(x,, v2xo)/a(x, 2) - 2w1 h l / a z  = v4xO, 

- qx,, Wl)/8(Z, 5) = D+ V2W1 

to determine w1 and x,, with the boundary conditions 

along with (4.5) below. 
xo = w1 = 0 at the wall (4.4) 

Then in the Stokes layer, where 7 = p-ln - 1 for the arbitrary cross-section, 

w = p-’W,+o(l), x = px,+o(p). 
Wo and X ,  are seen to be Lyne’s extended solutions, laid down in (3.9), which 
comply wit’h the no-slip conditions a t  7 = 0. Since, therefore, X ,  - - $yR,p(x) as 
7 --f 00 we require the third boundary condition on (4.3) to be 

axo/an = - $R,,u(x) a t  the wall. (4.5) 

Hence despite the dominance of the oscillating velocity (4.2) the steady secondary 
streaming xo and secondary down-pipe velocity w1 are controlled, interestingly 
enough, by Dean’s steady equations (4.3) but with the novel boundary conditions 
(4.4) and (4.5), which are interpreted physically as a slip velocity along the tube 
wall and arise from the action of the unsteady centrifugal force, which is confined 
to the Stokes layer. We shall content ourselves here with the following asymptotic 
solutions proposed for small and large values of the Dean number D ( 5  4.1) and 
of the secondary Reynolds number R, ( 9  4.2). 

4.1. D <  1 O Y D &  1,  R, N 1 

If D is first taken to  be small the match with case I1 in 8 3.1 is achieved, since 

x0 = xoo + Dxol + O(D2), w1 = Dwl0 + D2wl1 + O(D3) .  (4.6) 

I n  (4.3) this leaves xoo governed by the high frequency equation (3.3), implying 
inward ‘centrifuging’ along the centre-line (see figure 6 and Lyne 1971), while 
wl0 obeys (3.6) again. As in § 3.1, results for R, < land R, $ 1 are then derivable 
because xoo is known explicitly. 

For large values of D, however, with R, N 1 the core flow (4.3)-(4.5) itself splits 
up into a double-layered structure. Within the interior of the core, it is found that 

xo = D$p+xg’+o(D-q, w1 = DPw:o)+D~w~l)+o(1), (4.7) 

the orders of magnitude being apparent from the arguments of 5 2.2. Thence and 
from (4.3), t’he core flow is characterized by 

(4.8) w:o) = w1 (0) (x), = z/wp’(x), 

where w\O)(x) must be calculated in the boundary layer, in which n - D-1 and 
the asymptotic expansions for w1 and xo are effectively those for w, and xo in 
(2.12). Following the analysis through shows that D - ~ w ,  and D-$yo are exactly 
the steady solutions W, and X, of the high Dean number equations (2.13) and 
(2.14), as the slip velocity in (4.5) is negligible when D 9 1, and thus outward 
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centrifuging is promoted. A thinner slip region of thickness O ( 0 - 3 )  is in fact 
needed to accommodate the slip velocity but that is of secondary importance. As 
figure 6 shows in this situation, at any station across the tube there are four 
distinct regions of flow and the steady streaming exhibits remarkable changes in 
direction. It is inward very close to the wall, in the Stokes layer, outward a t  the 
edge of the Stokes layer and in the above-mentioned sublayer, changes to a 
strong inward jet motion again in the steady boundary layer and finally becomes 
a relatively slow outward drift in the main core. 

4.2. D N 1, R, < 1 or R, > 1 

When Rs is small the basic problem (4.3)-(4.5) reverts to the conventional Dean 
problem (2.3) and (2.4) for order-one values of D because the slip velocity in (4.5) 
is then a secondary influence. So w1 and xo are expressible as 

(4.9) 

where wl0 and xoo satisfy (2.3) and (2.4), and only in the perturbation xol does the 
effect of the wall slip become evident. 

In  contrast, when R, is large and D N 1 it is chiefly the influence of the slip 
velocity generated by the Stokes layer that drives the core motion, and the flow 
features are of a quite different character. Now xo is governed principally by the 
large-R, motion given by the Navier-Stokes equation (3.3), due to Lyne (1971), 
wherein the vorticity is - [Rs and [ is a constant (equal to 0.56 for the circle) 
throughout most of the core. The initial expectation was that w1 would be con- 
trolled by the steady pressure distribution in (4.3) for the most part, but after 
this work was completed the author learned the details of Blennerhassett’s (1976) 
concurrent but more comprehensive investigation of the present limit (for 
D < I ) ,  which does seem to be one of the most interesting features of our pulsatile 
flow studies. His numerical solutions, substantiated analytically, show the sur- 
prising result that D does not enter the main balance of forces a t  all. For the full 
details we therefore refer to his work (which is concerned more with a precise 
detailed examination of the possible flow fields rather than with the broader 
aspects that are the concern of this paper). 

The large-D limit in 5 4.1 does not match directly with that in case I, because 
the velocity along the pipe is still effectively given by (4.2). Rather, it  leads to 
case IV below; for, as the Dean number is increased the chief assumptions of 
case I11 are invalidated when D reaches the order of p-4 [since then p-lw0 N w1 
in (4.1)], and this defines the essential property of case IV, studied next. 
Physically, in case 111, the strong oscillatory down-pipe velocity, produced by 
the mainly oscillatory pressure gradient, itself induces a negligible centrifugal 
force in the core, which is why the relatively weak steady gradient is able to 
interact with the inertial force of the secondary motion there and allows a trend 
towards outward secondary flow. However the centrifugal effect of the oscillatory 
component becomes appreciable in the thin Stokes wall layer, where the flow is 
dominated by the unsteadiness, and so the effective slip velocity, with its 
tendency to provoke some inward secondary core motion, is also promoted. 

w1 = w10 +Rsw,, + O ( R 3 ,  x o  = xoo + 4 x 0 1  + O(R,2), 
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5.  Case IV: D % 1,p N D-%, R, N 1 

The important points about t,his new limit of the governing equations are that 
it generates a relatively simple pulsuting down-pipe velocity, with steady 
secondary velocities, and also that the merging of cases I11 above and V below is 
achieved. Moreover, the pulsatile solution can be found explicitly. Both the high 
frequency results in § 3.1 and the high Dean number studies of 6 2.2 propose the 
same order of magnitude, D%, for u) in the inviscid core. Thesteady flows, however, 
suggest that x is O(Df) and a viscous boundary layer of thickness - D-f ,  iii 
contrast to the oscillatory AOWS, where x is O( 1) in the core and the viscous Stokes 
layer has thickness N /3 = LD-8, say, wherein x - /3. (Here k is an order-one 
constant.) Accordingly we find that the motion must be examined in three 
distinct but inter-related stages, the three-tiered structure being in line with the 
findings of 3 4.1. First, in the core 

(5.1) zu = D f w ,  + Dfw, + . . . , x = Di,y, + xl + . . . 
reduces the governing equations from (1.4) and (1.5) to the separate forms 

2 8  alu  z a a 
li.2 a7 k2 ar ri.2 a7 as 

(V2x2) = 2 -  (wo2L’1), (5.2a) 
2 8  
?- (V2xo) = 0, 7- (V2x1) = 2woz0, -- 

and so on. So wo = E-l(2R,)Bsin7+fO(x,z), where fo is an unknown function of 
R: and z ,  and w1 and w2 are steady. Modifying Lyne’s (1971) reasoning for the 
present example, xo = xO(.z, z )  must also be steady, implying the same for 
w,(x, z )  from (5.2b). Postulating that f0(q z) is not identically zero then Fields, 
from the steady component of the second equation in (5 .2a) ,  that fo is independent 
of s, and accordingly wn and xn are fixed by 

w, = &-1(2~,)& sin7 +fo(x), xn = z/j i(x) (3.3) 

and the down-pipe velocity is pulsatile, with its steady component fo(.r) to be 
determined. 

Within the D-* boundary layer, where N = Din and s are the relevant 
co-ordinates, 

Then the successive balances in (1.4) and (1.5) are 

w = D)W,+D*W,+ ..., = DfX,+X,+ ... . (5.4) 

and 

( 5 . 5 b )  
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Therefore the unsteady and steady components can be uncoupled in the solution, 
leaving 

where mo(s,co) =fo(x) and both W, and W, are steady, as is X,. The term X, 
however is time dependent and is given, from ( 5 . 5 )  and (5.6), by 

(5.7) 

with A(s,  T ) ,  B(s, T )  and x2(s, N )  to be determined. The boundary conditions we 
stipulate for X ,  are X,(s, 0,7)  = 0, for zero normal velocity a t  the pipe wall N = 0, 
and, most important, that X, must be finite when N tends to infinity, to avoid 
a contradiction in solving for x1 in ( 5 . 2 ~ ) .  So 

B(s, 7 )  = 0, 7 )  = -fo(4, 
a.nd in the core the unsteady part xp) of x, then satisfies Laplace’s equation 
V2,yp) = 0, subject to 

on the surface n = 0. A slip velocity now persists in the boundary layer along 
N = 0 and is given by aX,(s, 0, 7) /aN in (5 .7 ) ,  which is non-zero ingeneral. Also 
(5 .5 )  now show that w, and X, are simply the known steady boundary-layer 
solutions of 5 2.2, and f,(x) is thereby determined. 

The steady component of IY thus tends to zero a t  the pipe wall iV = 0 but the 
oscillatory part remains as it was in the core. To reduce the latter to zero the 
viscous Stokes (0-8) layer, buried within the steady viscous layer, comes into 
operation. There 7 = Z-lnDO is of order unity and 

the major shearing term 7,(X) in x being forced by the (known) steady skin 
friction due to (5.6).  Substitution into the equationzof motion (1.4) and (1.5) 
reveals @, to be the solution pwo in (3 .9a) ,  since W, + (2R,)*sin~ as 7 --f co; 
however, 8, differs from (3.9b) because its growth as 7 + co must not only fit the 
linear behaviour of (5.7) for N << 1 but also the parabolic behavioul. as N +  0 of 
the steady term X ,  - ~ T ~ ( X )  N 2 ,  say. Such an argument requires that 

8, = $7,(x) E r 2  + &R:p(x)f,(x) [cos (7 - $7) - e-7 cos (7 - 7) - 2.) - 247 cos 71 

+R,p(x){-ar+ou,>, (5.9) 

where the term in curly brackets is the same as that given in (3.9b) above. 
Solution (5.9) satisfies no slip a t  7 = 0 and as 7 + 00 merges with the steady 
boundary layer, but it also imposes on 1, in ( 5 . 7 )  the slip conditions 1, = 0 and 

The fundamental nature of the pulsatile solution has therefore been completely 
determined for case IV. One may indeed continue to  lower-order terms in the 
three zones but the interplay between the inviscid core and the steady and 
unsteady viscous layers becomes increasingly complicated, although in principle 

3 F L M  71 

aX,/aN = - ~ , , u ( x )  at N = 0. 
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any number of terms could be deduced. Further, when E -+ 0 the flow clearly 
switches precisely into case I11 ($4.1)  for O(1) values of R,, as the sinusoidal 
behaviour of w, in (5.3) becomes dominant. At the other extreme, when k -+ co 
with R, N 1 and the steady term in (5.3) overrides the oscillatory one, the flow in 
essence reduces to a completely steady motion and the solutions join with case V 
below. Finally, for L and R, both large a continuation into case X (see $8) is 
achieved. Case I V  therefore acts as a junction between flows for R, N I and those 
for which K cc D f ,  studied in $8 7 and 8 below. 

Here in case IV there are again pronounced changes in the direction of the 
streaming and figure 6 ( b )  in fact still gives an adequate representation of this 
secondary flow. Further, the pulsatile motion (5.3) is produced despite the 
smallness of the steady component of the pressure gradient in relation to the 
unsteady one, because the frequency of the unsteady component, though large, 
is not large enough to override the strength of the steady flow, which is largely 
responsible for the outward secondary streaming. 

6. The other significant limits for R, - 1 (cases V-VIII) 
6.1. Case V: D B 1, p - D-3, R, N I 

If p = iD-4 with I" N I ,  D B 1 and R, N 1, then the steady and unsteady theories 
of $9 2 and 3 both indicate the presence of an inviscid core and of viscous layers 
of thickness N D-)  adjoining the wall. Again, the imposed pressure-variation 
terms in (1.5) are of equal orders of magnitude (D).  So it is somewhat surprising 
to discover that the motion here is largely a steady one, developing in the core 
exactly as in (5.1), where now w, = wo(x) and xo = z[wb(x)]-l are the main 
components. The reason is simply that the oscillations in the pressure variation 
are too slow to affect the large steady down-pipe motion. The oscillating part of 
the pressure gradient merely promotes the secondary down-pipe motion and 
streaming, 

w1 = ~-1(2R,)*sin~+fl(x), x1 = (6.1) 

respectively, and the lower-order contributions w2, w3, . . . , are steady, as is x,, 

case I for large values of D, so that if n = D-)N 
I n  the D-* boundary layer, in similar fashion, w and x behave to first order as in 

w = D%W,(s, N )  + D*W,(s, N ,  7 )  + . . ., 
X = DfXo(s, N )  + Xl(s, N, 7 )  + . . . . 

Here W, and X, are the steady large-D solutions ( $  2.2) and the unsteady perturba- 
tions W, and XI are fixed by the nonlinear equations 
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subject to no-slip conditions a t  N = 0 and 

as N -+ co. One outstanding aspect of (6.3) is the way all the forces possible in the 
current pipe-flow model are combining to control the disturbance velocities. 
(A similar feature arisesfor the basic flow field of case X below.) Equations (6.3) 
and ( 6 . 3 ~ )  should be sufficient to enablef,(z) to be ascertained. A linearized form 
of solution similar to that employed by Weyl (1941) for the boundary-layer 
equations adds weight to this argument, but we observe that despite the basically 
steady properties of this motion the unsteady disturbances are of quite different 
character from those in the classic limit of § 2.2. Hence case V does not match 
immediately with case I. It does with case IV when i i s  small and R, is O(1); the 
nonlinear D-4 boundary layer (6.3) itself then sub-divides into two part,s, a 
steady region when N - 1 and an  inner (Stokes) layer appearing when N - i, and 
their relation is along the lines of the discussion in § 5. Further, case V connect,s 
with case X below if R, is taken to  be suitably large. 

For values of R, of order one, this completes the description of the solution 
when one of the numbers p and D is small (i.e. cases 11-V) and we shall now 
discuss the remaining possibilities, not so far covered, occurring when either p 
or D is large. Plainly cases I, IV and V provide some inroads into this regime but 
to join cases I and V, as p decreases, and case I to case 11, as both D and pdecrease, 
seems to require the introduction of some ' buffer ' cases, namely cases VI-VIII, 
which we shall now describe briefly. Two of these new limits are of an essentially 
steady nature and match with case I in appropriate conditions but the third, 
case VII I ,  is another pulsatile motion. 

6.2. Cases VI-VIII: R, N 1, D or 9 1 

When D B 1 and p - 1 (case VI) the flow field has the familiar form (5.1) in the 
core and (6.2) in the D-f boundary layer, motivated by cases I and V above. 
Both (w,, x,) and (W,, X,) are the known steady solutions for large values of the 
Dean number and only in the perturbations do differences from case I appear. 
For the sake of brevity we shall not go into the precise details of case V I  here, as 
the expansions and resulting equations are straightforward but rather lengthy 
and in effect the unsteadiness is so weak that no new pulsatile phenomena appear. 
It is found however that for /? + 0 the solution in case VI continues into case V, 
while for p -+ 00 it leads to  case VII, defined by p 9 1, D - 1 and R, N 1. Here 

w = w , + ~ - ~ ( ~ R , ) ~ w , +  ..., x = ~ , + p - 3 ( 2 R , ) ~ ~ ~ +  ... . (6.4) 

Such expansions lead to the full Dean equations (2 .3)  and (2.4) for w, and xo and 
evidently the disturbances w1 and x, are identical with those governed by ( 2 4 ,  
even though R, is smaller here, so that the solution to (6.4) is assumed already and 
the match with case I is straightforward. As D + co, case VII therefore exhibits 
the form (2.10) ff. and merges into the large-/3 limit of case VI. For small values of 
D ,  case VII gives the Poiseuille flow results (2.6) and (2.7) for w,, and xo and (2.8) 
and (2.9) for w1 and x,. Consequently the structure of case VII strictly breaks 

3'2 
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FIGURE 7. Schematic diagram showing the ranges of validity and interconnexions of cases 
11-VIII, asyrnpt,otic solutions for R, of order unity. Diagram not to scale. 

down, for small D values, when /? N D-4 % 1 since then wo and /3-3w1 in (6.4) 
shrink to  the same order of magnitude, D. 

Case VIII is therefore invoked to cope with the new situation R, - 1, D < 1, 
/? - Dg. Writing /3 = fiD-4, where r% N 1, then gives 

w = Dw, + D2w1 + . . ., x = D2xo + D3x1.. . . (0.5) 

Substituting (6.5) into (1.4) and (1.5) we deduce that wo and xo are governed by 
the unsteady Poiseuille flow equations, implying the essentially straight-pipe 
pulsatile velocity distribution 

wo = a( 1 - ~ 2 )  [ 1 + ( 2 / r E 3 )  (SR$ cos 7-1 (0.G) 

for B circular tube. Hence the secondary streaming is 

l2 2 - r2 )2  (I - f )  [ 1 + - (ZJ* cos7- sin @. 
x0 = 1152 ?E3 

I n  conclusion, we have from (6.4)-(6.7) that case VIII merges with case VII as 
)ii -+ co, as required, and furthermore, from (6.5)-(6.7) and 8 3.2, case V I I I  reduces 
to the classic limit I1 for low frequencies, p + 1, as 6, + 0. Cases I1 and VII can 
be seen almost to match directly but case VIII has been brought in anyway 
because i t  provides another illustration of an effectively pulsating core flow, 
equation (6.6). The asymptotic picture that we have built up of the pipe-flow 
features for order-unity values of R, is thereby completed, and is summarized 
diagrammatically in figure 7. 

Hereafter we focus on two limits of the governing equations that occur when 
R,, as well as p, is allowed to depend on the Dean number D when D is large. The 
two limits selected (cases I X  and X) produce a switch from the classic limit of 
steady flow, case I, to the only truly pulsating flow situation so far encountered 



Pulsatile flow in curved pipes 37 

for D > 1, that of case IV, and we discover that in both instances the new distribu- 
tion of down-pipe velocity is also pulsatile; but in case IX it is not of the relatively 
simple additive kind arising in case IV, and to a lesser extent in cases I11 and V, 
above. Such behaviour of the velocity field is naturally interesting in its own 
right. The common feature of the steady flow limit (2.1) and (2.2) and the pulsatile 
motion of case IV, (5.1)-(5.3), when D % 1 is the maintenance of the relationship 
Kcc DQ in both, and so the next two situations investigated are both defined with 
this propertly preserved, the first situation occurring when /3 N D-t and the 
second when j3 N D-f, for reasons set out in the following sections. 

7. Case IX: D > 1, R, D,  p D-E 
Returning to the classic steady flow a t  high Dean number of $ 2.2, we found 

there that the ratio of the major steady term in w to the unsteady disturbance 
was D3: ( 2R,)+ D-*/F3. Hence if K remains proportional to D6, so that R, cc P2DQ, 
then these two contributions are of comparable orders of magnitude when 
/l N D-b, which imposes a restriction on the range of validity of case I and defines 
the first of the new limits that we now discuss. Let us set 

/3 = fiD-B, R, = +h2fii2D ( D  l),  (7.1) 
where ii and h are O ( i )  and the expression for R, is written in a manner that 
incorporates the relation K = AD* of (2.30). The expansions in the core then 
follow immediately from $2.2; thus 

The centrifugal term remains the largest in the x equation of motion (1.4), giving 

while in the w equation (1.5) both time variation and inertia forces are balanced 
by the pressure gradient, which itself comprises both steady and oscillatory 
components. Hence, upon integration with respect to  z and using symmetry, xo 

w = Dgw, + Dhw, + . . . , x = D f x ,  + D ~ x ,  + . . . . (7.2) 

wO = wO(x7 r ) 9  (7.3) 

takes the form 
(7.4) 

The viscous layer is positioned at n = D-SN and from (7.3) and (7.4) 

ZU = DfW,(s, N ,  T )  + DtW,(s, N ,  T )  + ..., x = D)X,(s, N ,  T )  + DBS,(s, N ,  r )  + .. . . 
(7.5) 

This leads to the familiar boundary-layer equations 

- a(x,, w,)/a(s, N )  = a2w0/aN2, 

but now subject to the new constraints 

W, -+ wo(z, T), aX,/aN -+ 0 as N -+ m,) 

W, = X ,  = BX,/BN = 0 a t  N = 0, 

where Xo(s , t0 ,7)  = g(z) ($ [ hcosr-%] a7 + 1}/2 
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serves to determine wo(x, 7 ) .  Although no time derivative is involved in (7.5), the 
T dependence of W,, X,, w, and 2, cannot in general be divorced from the steady 
parts. The problem posed by (7.6)-( 7.8) seems to demand on the whole a numerical 
approach to the solution, which has not yet been attempted, but to demonstrate 
the proposed non-trivial nature of the pulsatility, i.e. that the down-pipe flow 
(7.3) is not simply a linear combination like (5.3), solutions may be generated for 
small and large values of 11 respectively. As each solution includes series of terms 
in COST and sin7, it is reasonable to assert that the general behaviour of the core 
flow will be more subtle than in the previous pulsations explored in 5s 2-6. 

For 11 B 1 the solutions may be expressed asymptotically as 

(7.9) 

and siniilarly for w, and 2,. From (7.4)-(7.8) woo, xoo, Woo and X, ,  are then the 
steady solutions of the large-D equations in 5 2.2, while (2A)-& wol and (2A)-txol 
are identical with the disturbances w'p) and xio) given in (2.21), and so on. This 
occurrence greatly enhances the importance of all the similarity flows in (2.25)- 
(2.29); for a pinched inside wall in particular, the pulsatile velocity down the 

(7.10) 
pipe is 

from (2.15) and (2.25), and subsequent examination based on the similarity 
variable '1 of (2.15) indicates that 

wo2 = C2x% cos27 + D2x8  sin^, ( 7 . 1 1 )  

where C, and D, are constants to be determined from linear equations like (2.27). 
[Likewise the flow near the inner and outer walls of a circle follows from (1.28) 
and (2.29).] Thus case I X  merges successfully with the large-D limit of case I. 
Conversely when f i  < 1 we believe that, whilst W,, X ,  and x, again develop 
according to (7.9) ff. (with C2 replacing 5-2), w, is represented by 

(7.12) 

I TG(~,  N ,  7 )  = ~ h ( s ,  N )  + ~ - 2 ~ ~ ( s ,  N ,  7 )  + 0(11-4), 
X0(s ,  N , 7 )  = Xo0(s ,  N )  + fi-2Xol(~, N ,  7 )  + O( 6 - 4 )  

w, = Bxj + 5-2Cxq2A)t cos 7 + 11-4w02 + 0 ( 6 - 6 ) ,  

w, = [A sin T +foO(x)] + fi2w,,(x, 7 )  + O(fi4), 

which reproduces the equations (7.6) for Woo and X,,, but with 

(7.13) 

as X -+ 00, because of (7.7) and (7.8).  (This nonlinear problem may be solved in 
principle by extending Weyl's (1941) method and dealing with a series of linear 
equations, a procedure which can be expected to yield qualitatively correct 
information on the flow field here, as i t  does for the nonlinear flows in 5 2.2, for 
instance. ) 

The complicated character of the pulsatility, strongly suggested by the 
solutions (7.9)-(7.13), and of the associated secondary velocities, is probably the 
point of foremost significance in case IX.  I n  addition this has been the first 
example of a core/boundary-layer motion in which the secondary streaming is 
also largely unsteady, an occurrence connected with the actions of the pressure 
gradient, whose steady and unsteady parts are here of comparable magnitude. 
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When ii is large, for example, so that the motion is quasi-steady, the down-pipe 
now pulsates nearly in plase with the pressure gradient, and while the secondary 
streaming remains outward (as in figure 6 b )  with its streamline directions largely 
unchanged, the strength of the secondary velocities also pulsates almost in phase. 
But when .ii is small the pulsatility becomes $R. out of phase with the pressure 
gradient and the secondary streaming may exhibit reversals in direction during 
each time cycle, owing to the enhanced effect of the frequency of oscillation. 

8. Case X: D B 1, p 0 - 4 ,  R, D* 
Theresults (7.12)-(7.14)showthat, when%, definedin (7.1), becomessmalland 

of order D-i,  the basic structure of case IX as set out in (7.2)-(7.5) fails owing to 
the gradual emergence of the other contributory forces. So we proceed to  case X, 
with 

Since now /3 is small and R, and D are large, viscous effects are again confined 
to thin wall layers. More significantly, however, because p, R;i and D-4 are 
comparable, Lyne's (1971) description of the oscillatory high frequency limit and 
its propert,ies for R, B 1, and Smith's (1 975) study of the steady large-D range 
both lead to a D-4 viscous layer, which may therefore be expected to depend on 
the interplay between inertial and centrifugal effects, unsteadiness and the 
oscillatory pressure variation, as well as viscous forces, and such proves to be the 
case in practice. Throughout the core, where expansions (7.2) again apply, the 
motion is mainly given by 

wo = hsin7+f0(x), I 

Even though the steady component of the pressure gradient is here much less 
than the unsteady one, they act together to induce the main, pulsatile, velocity 
wo, while the steady gradient alone drives the secondary, unsteady, motion xo. 

Near the walls of the tube the boundary layer and Stokes layer coincide, from 
the previous reasoning, and are placed where N = Dfn N 1. There the velocities 
are again expressible as in (7.5) and from (1.4) and (1.5) we derive the viscous 
equations 

The boundary conditions on (8.3) provide for no slip a t  N = 0 and for matching 
to the forms (8.2) a t  x = g(z). The solution to (8.2) and (8.3) will be discussed for 
extreme values of the parameter a (a small-h analysis is also possible and leads to 
case V above), since a numerical treatment is again needed for the general 
situation. 
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When the value of i is large a transition to the small+ flow of case IX is anti- 
cipated, and i t  takes place in the form 

1% = 4, + i-2wo, + o(i-4), W ,  = [A  sin7 + f o o ( ~ ) ]  + i-%ol(x) + o(i-4). (SA) 

the expansions of xo and X, also proceeding in powers of F2.  The temporal 
variations in (8.3) are thereby suppressed, to first order in F3, and the problem 
(7.6) with (7 .7)  and its subsequent treatment along the lines of (i.12)ff. are 
retrieved. At the opposite extreme, i< 1, a partition of the boundary layer 
occurs, owing principally to the shrinking of the Stokes layer associated with 
t,he thickness O(iD-4) instead of O(D-*). The core-flow properties may be 
expressed in the manner of w,, in (8.4), with iz replacing i-2, and likewise IV, 
develops as in (8.4) when N is of order one, except that now 

IV,, = h sin 7 + Fo(s, N ) ,  (8.5) 

where Fo(s, N )  ancl S,(s, N )  are the classical steady boundary-layer solutions 
( 9  2.2). The steady contributions to the motion therefore satisfy the wall condi- 
tions a t  AT = 0, but when N is small and O ( l )  the Stokes layer acts to deal with the 
Asin7 term in (8.5) and the 7-dependent forces in (8.3) are then recalled. This 
structure is basically that which arose in case IV,  to which we refer for the 
precise details, and so the required junction with case IV, where R, - I, is 
effected. 

Apart from the discovery of another pulsating motion along the tube, (8.2), 
and the coincidence of the Stokes (p), the steady (Dd) and the secondary (R;h) 
viscous layers in (8.3),  the intercst in case X lies in its completion of the develop- 
ment from case I to  case IV for pipe flows in which (2.30) is preserved. The 
matching itself, I + IX  -+ X --f IV, is also intriguing as a t  both ends of the range 
the predominant secondary velocity is steady, whereas the intermediate limits 
I X  and X possess the pulsatile characteristics (7.4) and (8.2). Further, the 
(linear) pulsatility in case X is produced by the presence of an applied steady 
pressure gradient much less in magnitude than the applied oscillatory part, 
whereas the (nonlinear) pulsations in case IX require equal orders of magnitude 
for the gradients. The persistence of the pulsatile nature from case IX to case X 
appears to be due to  the associated increase in the frequency of the oscillatory 
component. The streaming in case X, as in case IX, may well be reversible when 
i is large, but is definitely outward when becomes small because of the decrease 
in the secondary Reynolds number R,. 

9. Further discussion 
Among the many aspects of the different flows produced by the imposed 

pulsatile pressure gradient (1 .1 )  in a curved pipe, the (not unexpected) fact that 
the ratio G/p*ww of the magnitude G of the steady component of the pressure 
variation to that of the unsteady component ( p * w v )  is not necessarily the primary 
feature determining the nature of the motion stands out perhaps the most. 
Table 1 presents the principal physical attributes of all the cases studied in this 
paper, along with the associated pressure-gradient ratios G/p*w w. Certainly in 
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Case I I1 I11 IV v VI  VII  VIII IX x 
G / p * o v  + 1 < 1 < I  Q 1 O(1) 41 $ 1 O(1) O(1) < 1 
Down-pipe st. osc. osc. pds .  st. st. st. pnls. puls. puls. 
velocity 

Secondary st., 0 st., I or 0 st., I or 0 st., 0 st., 0 st., 0 st., 0 puls., 0 puls. puls. 

TABLE 1. The main characteristics of the down-pipe and secondary motions, and the 
pressure-gradient ratio G/p*wW, for cases I-X. Flows: st., steady; osc., oscillatory; puls., 
pulsating; I ,  inward; 0, outward. 

the three cases (I, VI and VII) where the steady amplitude is much greater than 
the amplitude of the oscillatory part, steady down-pipe flow is always produced, 
with the corresponding steady secondary streaming being outward. This seems 
to  be due to the balancing of the steady pressure gradient by the down-pipe 
inertial and viscous forces, so that unsteadiness is not induced in the down-pipe 
flow, and this in turn leads to an interplay between the steady secondary inertial 
and viscous effects and the centrifugal force alone. However, if G < p * w w  
(cases 11-IV and X), so that the applied pressure variation is merely a small 
steady perturbat,ion of the oscillatory variation, the flow may nevertheless be 
pulsatile because the frequency of the oscillations may not be high enough to 
overwhelm the influence of the steady gradient. This occurs in cases IV and X, 
where the oscillatory component has practically no effect on the inertial and 
centrifugal forces in the inviscid core and influences them only in the Stokes layer, 
thus allowing a steadily induced down-pipe velocity of magnitude comparable 
with the unsteady velocity in the core. I n  cases I1 and 111, on the other hand, the 
oscillations are so fast that they do override the steady effect. Similarly in the 
three remaining cases (V, VIII and IX),  where G N p * w v ,  although cases VIII 
and I X  do produce pulsating clown-pipe flows (the former a viscous inertia-free 
motion, the latter inviscid and inertial), the oscillations in case V are slow enough 
to permit the steady effect to dominate because again they have negligible 
inertial and centrifugal influence in the core. The need for the detailed analysis of 
each particular case therefore seems clear. 

Since i t  is already known that both the fully steady and oscillatory mot'ions 
can produce steady streaming (figure 6), one might be led to  expect steady 
secondary flow for all pulsatile pressure gradients but this is not borne out in the 
detailed examinations. The first seven cases do exhibit steady streaming, whether 
inward or outward, but the straightforward viscous pulsatile-Poiseuille motion 
of case VIII and the much less obvious inviscid pulsatile core motions of cases I X  
and X all have associated pulsatility in the secondary velocities. I n  case I X  the 
cause lies in the balance of all but the viscous forces in the down-pipe core flow, 
whereas in case X the secondary unsteadiness is forced by the presence of a small 
unsteady down-pipe velocity in addition to the main pulsatility. 

For the flows with R, = O( I ) ,  cases 11-VIII, in which nearly all the secondary 
motions are directed outward along the centre-line, presumably there exists a 
curve in the p, D parameter space of figure 7 marking the cross-over from fully 
outward to partly inward secondary streaming. The end points of this curve have 
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been shown to lie within the regimes of cases I1 and 111, so that for D < 1 there is 
a finite value Po such that the secondary core flow is outward forb > Po, while for 
P < 1 outward streaming is again promoted for D > Do, where Do is a finite 
number to be determined. Apart from the need to make the general flow model 
more applicable to (for example) physiological situations, the determination of 
Po and Do, in cases I1 and 111, and numerical investigations of cases IX and X 
mould appear to  be the next most vital tasks to undertake, given the consistent 
picture of the transitions from one case to  another presented in this work. 

I am grat’eful to the referees for their helpful comments on this paper. 
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